Aliases: C23.8S4, C22.GL2(𝔽3), C2.C42⋊S3, C2.3(C42⋊S3), C23.3A4⋊4C2, SmallGroup(192,181)
Series: Derived ►Chief ►Lower central ►Upper central
C23.3A4 — C23.8S4 |
Generators and relations for C23.8S4
G = < a,b,c,d,e,f,g | a2=b2=c2=f3=g2=1, d2=gag=fbf-1=abc, e2=faf-1=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, geg=be=eb, bg=gb, ede-1=cd=dc, ce=ec, cf=fc, cg=gc, fdf-1=cde, gdg=de, fef-1=bcd, gfg=f-1 >
Character table of C23.8S4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 6 | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 3 | 3 | 24 | 32 | 6 | 6 | 12 | 24 | 32 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ4 | 2 | -2 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from GL2(𝔽3) |
ρ5 | 2 | -2 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from GL2(𝔽3) |
ρ6 | 3 | 3 | 3 | 3 | 1 | 0 | -1 | -1 | -1 | 1 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ7 | 3 | 3 | 3 | 3 | -1 | 0 | -1 | -1 | -1 | -1 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S4 |
ρ8 | 3 | 3 | -1 | -1 | 1 | 0 | -1+2i | -1-2i | 1 | -1 | 0 | -i | -i | i | i | complex lifted from C42⋊S3 |
ρ9 | 3 | 3 | -1 | -1 | 1 | 0 | -1-2i | -1+2i | 1 | -1 | 0 | i | i | -i | -i | complex lifted from C42⋊S3 |
ρ10 | 3 | 3 | -1 | -1 | -1 | 0 | -1+2i | -1-2i | 1 | 1 | 0 | i | i | -i | -i | complex lifted from C42⋊S3 |
ρ11 | 3 | 3 | -1 | -1 | -1 | 0 | -1-2i | -1+2i | 1 | 1 | 0 | -i | -i | i | i | complex lifted from C42⋊S3 |
ρ12 | 4 | -4 | 4 | -4 | 0 | 1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from GL2(𝔽3) |
ρ13 | 6 | 6 | -2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C42⋊S3 |
ρ14 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal faithful |
ρ15 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal faithful |
(5 15)(6 16)(11 13)(12 14)
(1 8)(2 7)(3 9)(4 10)
(1 8)(2 7)(3 9)(4 10)(5 15)(6 16)(11 13)(12 14)(17 19)(18 20)(21 23)(22 24)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 9 8 3)(2 4 7 10)(5 11)(6 14)(12 16)(13 15)(17 24)(18 23)(19 22)(20 21)
(1 6 23)(2 14 19)(3 13 24)(4 15 18)(5 20 10)(7 12 17)(8 16 21)(9 11 22)
(1 9)(3 8)(4 10)(5 18)(6 22)(11 23)(12 17)(13 21)(14 19)(15 20)(16 24)
G:=sub<Sym(24)| (5,15)(6,16)(11,13)(12,14), (1,8)(2,7)(3,9)(4,10), (1,8)(2,7)(3,9)(4,10)(5,15)(6,16)(11,13)(12,14)(17,19)(18,20)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,9,8,3)(2,4,7,10)(5,11)(6,14)(12,16)(13,15)(17,24)(18,23)(19,22)(20,21), (1,6,23)(2,14,19)(3,13,24)(4,15,18)(5,20,10)(7,12,17)(8,16,21)(9,11,22), (1,9)(3,8)(4,10)(5,18)(6,22)(11,23)(12,17)(13,21)(14,19)(15,20)(16,24)>;
G:=Group( (5,15)(6,16)(11,13)(12,14), (1,8)(2,7)(3,9)(4,10), (1,8)(2,7)(3,9)(4,10)(5,15)(6,16)(11,13)(12,14)(17,19)(18,20)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,9,8,3)(2,4,7,10)(5,11)(6,14)(12,16)(13,15)(17,24)(18,23)(19,22)(20,21), (1,6,23)(2,14,19)(3,13,24)(4,15,18)(5,20,10)(7,12,17)(8,16,21)(9,11,22), (1,9)(3,8)(4,10)(5,18)(6,22)(11,23)(12,17)(13,21)(14,19)(15,20)(16,24) );
G=PermutationGroup([[(5,15),(6,16),(11,13),(12,14)], [(1,8),(2,7),(3,9),(4,10)], [(1,8),(2,7),(3,9),(4,10),(5,15),(6,16),(11,13),(12,14),(17,19),(18,20),(21,23),(22,24)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,9,8,3),(2,4,7,10),(5,11),(6,14),(12,16),(13,15),(17,24),(18,23),(19,22),(20,21)], [(1,6,23),(2,14,19),(3,13,24),(4,15,18),(5,20,10),(7,12,17),(8,16,21),(9,11,22)], [(1,9),(3,8),(4,10),(5,18),(6,22),(11,23),(12,17),(13,21),(14,19),(15,20),(16,24)]])
G:=TransitiveGroup(24,313);
(3 4)(11 13)(12 14)(15 16)
(1 2)(5 6)(7 9)(8 10)
(1 2)(3 4)(5 6)(7 9)(8 10)(11 13)(12 14)(15 16)(17 19)(18 20)(21 23)(22 24)
(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 5 2 6)(3 16)(4 15)(7 10 9 8)(12 14)(17 20)(18 19)(21 23)
(1 11 19)(2 13 17)(3 21 10)(4 23 8)(5 14 18)(6 12 20)(7 15 22)(9 16 24)
(1 9)(2 7)(3 18)(4 20)(5 10)(6 8)(11 24)(12 23)(13 22)(14 21)(15 17)(16 19)
G:=sub<Sym(24)| (3,4)(11,13)(12,14)(15,16), (1,2)(5,6)(7,9)(8,10), (1,2)(3,4)(5,6)(7,9)(8,10)(11,13)(12,14)(15,16)(17,19)(18,20)(21,23)(22,24), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,5,2,6)(3,16)(4,15)(7,10,9,8)(12,14)(17,20)(18,19)(21,23), (1,11,19)(2,13,17)(3,21,10)(4,23,8)(5,14,18)(6,12,20)(7,15,22)(9,16,24), (1,9)(2,7)(3,18)(4,20)(5,10)(6,8)(11,24)(12,23)(13,22)(14,21)(15,17)(16,19)>;
G:=Group( (3,4)(11,13)(12,14)(15,16), (1,2)(5,6)(7,9)(8,10), (1,2)(3,4)(5,6)(7,9)(8,10)(11,13)(12,14)(15,16)(17,19)(18,20)(21,23)(22,24), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,5,2,6)(3,16)(4,15)(7,10,9,8)(12,14)(17,20)(18,19)(21,23), (1,11,19)(2,13,17)(3,21,10)(4,23,8)(5,14,18)(6,12,20)(7,15,22)(9,16,24), (1,9)(2,7)(3,18)(4,20)(5,10)(6,8)(11,24)(12,23)(13,22)(14,21)(15,17)(16,19) );
G=PermutationGroup([[(3,4),(11,13),(12,14),(15,16)], [(1,2),(5,6),(7,9),(8,10)], [(1,2),(3,4),(5,6),(7,9),(8,10),(11,13),(12,14),(15,16),(17,19),(18,20),(21,23),(22,24)], [(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,5,2,6),(3,16),(4,15),(7,10,9,8),(12,14),(17,20),(18,19),(21,23)], [(1,11,19),(2,13,17),(3,21,10),(4,23,8),(5,14,18),(6,12,20),(7,15,22),(9,16,24)], [(1,9),(2,7),(3,18),(4,20),(5,10),(6,8),(11,24),(12,23),(13,22),(14,21),(15,17),(16,19)]])
G:=TransitiveGroup(24,315);
(1 2)(3 5)(4 6)(7 8)(17 24)(18 21)(19 22)(20 23)
(1 7)(2 8)(3 4)(5 6)(9 13)(10 14)(11 15)(12 16)
(1 8)(2 7)(3 6)(4 5)(9 15)(10 16)(11 13)(12 14)(17 22)(18 23)(19 24)(20 21)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 6 7 5)(2 4 8 3)(9 10 13 14)(11 12 15 16)(17 22)(19 24)
(1 21 12)(2 23 16)(3 24 13)(4 17 15)(5 22 9)(6 19 11)(7 18 10)(8 20 14)
(1 14)(2 16)(3 11)(4 15)(5 9)(6 13)(7 10)(8 12)(19 24)(20 21)
G:=sub<Sym(24)| (1,2)(3,5)(4,6)(7,8)(17,24)(18,21)(19,22)(20,23), (1,7)(2,8)(3,4)(5,6)(9,13)(10,14)(11,15)(12,16), (1,8)(2,7)(3,6)(4,5)(9,15)(10,16)(11,13)(12,14)(17,22)(18,23)(19,24)(20,21), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6,7,5)(2,4,8,3)(9,10,13,14)(11,12,15,16)(17,22)(19,24), (1,21,12)(2,23,16)(3,24,13)(4,17,15)(5,22,9)(6,19,11)(7,18,10)(8,20,14), (1,14)(2,16)(3,11)(4,15)(5,9)(6,13)(7,10)(8,12)(19,24)(20,21)>;
G:=Group( (1,2)(3,5)(4,6)(7,8)(17,24)(18,21)(19,22)(20,23), (1,7)(2,8)(3,4)(5,6)(9,13)(10,14)(11,15)(12,16), (1,8)(2,7)(3,6)(4,5)(9,15)(10,16)(11,13)(12,14)(17,22)(18,23)(19,24)(20,21), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,6,7,5)(2,4,8,3)(9,10,13,14)(11,12,15,16)(17,22)(19,24), (1,21,12)(2,23,16)(3,24,13)(4,17,15)(5,22,9)(6,19,11)(7,18,10)(8,20,14), (1,14)(2,16)(3,11)(4,15)(5,9)(6,13)(7,10)(8,12)(19,24)(20,21) );
G=PermutationGroup([[(1,2),(3,5),(4,6),(7,8),(17,24),(18,21),(19,22),(20,23)], [(1,7),(2,8),(3,4),(5,6),(9,13),(10,14),(11,15),(12,16)], [(1,8),(2,7),(3,6),(4,5),(9,15),(10,16),(11,13),(12,14),(17,22),(18,23),(19,24),(20,21)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,6,7,5),(2,4,8,3),(9,10,13,14),(11,12,15,16),(17,22),(19,24)], [(1,21,12),(2,23,16),(3,24,13),(4,17,15),(5,22,9),(6,19,11),(7,18,10),(8,20,14)], [(1,14),(2,16),(3,11),(4,15),(5,9),(6,13),(7,10),(8,12),(19,24),(20,21)]])
G:=TransitiveGroup(24,426);
(1 3)(2 4)(5 7)(6 8)(9 21)(10 22)(11 23)(12 24)
(1 2)(3 4)(5 8)(6 7)(13 20)(14 17)(15 18)(16 19)
(1 4)(2 3)(5 6)(7 8)(9 23)(10 24)(11 21)(12 22)(13 18)(14 19)(15 20)(16 17)
(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 7 2 6)(3 5 4 8)(9 21)(10 12)(11 23)(13 17 20 14)(15 19 18 16)(22 24)
(1 22 14)(2 10 16)(3 24 17)(4 12 19)(5 11 20)(6 21 15)(7 9 13)(8 23 18)
(1 13)(2 20)(3 15)(4 18)(5 16)(6 17)(7 14)(8 19)(9 22)(10 11)(12 23)(21 24)
G:=sub<Sym(24)| (1,3)(2,4)(5,7)(6,8)(9,21)(10,22)(11,23)(12,24), (1,2)(3,4)(5,8)(6,7)(13,20)(14,17)(15,18)(16,19), (1,4)(2,3)(5,6)(7,8)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,7,2,6)(3,5,4,8)(9,21)(10,12)(11,23)(13,17,20,14)(15,19,18,16)(22,24), (1,22,14)(2,10,16)(3,24,17)(4,12,19)(5,11,20)(6,21,15)(7,9,13)(8,23,18), (1,13)(2,20)(3,15)(4,18)(5,16)(6,17)(7,14)(8,19)(9,22)(10,11)(12,23)(21,24)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,21)(10,22)(11,23)(12,24), (1,2)(3,4)(5,8)(6,7)(13,20)(14,17)(15,18)(16,19), (1,4)(2,3)(5,6)(7,8)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,7,2,6)(3,5,4,8)(9,21)(10,12)(11,23)(13,17,20,14)(15,19,18,16)(22,24), (1,22,14)(2,10,16)(3,24,17)(4,12,19)(5,11,20)(6,21,15)(7,9,13)(8,23,18), (1,13)(2,20)(3,15)(4,18)(5,16)(6,17)(7,14)(8,19)(9,22)(10,11)(12,23)(21,24) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,21),(10,22),(11,23),(12,24)], [(1,2),(3,4),(5,8),(6,7),(13,20),(14,17),(15,18),(16,19)], [(1,4),(2,3),(5,6),(7,8),(9,23),(10,24),(11,21),(12,22),(13,18),(14,19),(15,20),(16,17)], [(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,7,2,6),(3,5,4,8),(9,21),(10,12),(11,23),(13,17,20,14),(15,19,18,16),(22,24)], [(1,22,14),(2,10,16),(3,24,17),(4,12,19),(5,11,20),(6,21,15),(7,9,13),(8,23,18)], [(1,13),(2,20),(3,15),(4,18),(5,16),(6,17),(7,14),(8,19),(9,22),(10,11),(12,23),(21,24)]])
G:=TransitiveGroup(24,428);
Matrix representation of C23.8S4 ►in GL5(𝔽73)
72 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
60 | 7 | 0 | 0 | 0 |
7 | 13 | 0 | 0 | 0 |
0 | 0 | 27 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 27 |
7 | 13 | 0 | 0 | 0 |
13 | 66 | 0 | 0 | 0 |
0 | 0 | 27 | 0 | 0 |
0 | 0 | 0 | 46 | 0 |
0 | 0 | 0 | 0 | 1 |
39 | 26 | 0 | 0 | 0 |
27 | 33 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 67 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 44 | 0 |
68 | 36 | 0 | 0 | 0 |
48 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 45 | 0 |
0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 72 |
G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72],[72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,1],[72,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[60,7,0,0,0,7,13,0,0,0,0,0,27,0,0,0,0,0,72,0,0,0,0,0,27],[7,13,0,0,0,13,66,0,0,0,0,0,27,0,0,0,0,0,46,0,0,0,0,0,1],[39,27,0,0,0,26,33,0,0,0,0,0,0,60,0,0,0,0,0,44,0,0,67,0,0],[68,48,0,0,0,36,5,0,0,0,0,0,0,13,0,0,0,45,0,0,0,0,0,0,72] >;
C23.8S4 in GAP, Magma, Sage, TeX
C_2^3._8S_4
% in TeX
G:=Group("C2^3.8S4");
// GroupNames label
G:=SmallGroup(192,181);
// by ID
G=gap.SmallGroup(192,181);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,57,254,1143,268,171,934,521,80,2524,2531,3540]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^3=g^2=1,d^2=g*a*g=f*b*f^-1=a*b*c,e^2=f*a*f^-1=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,g*e*g=b*e=e*b,b*g=g*b,e*d*e^-1=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*d*f^-1=c*d*e,g*d*g=d*e,f*e*f^-1=b*c*d,g*f*g=f^-1>;
// generators/relations
Export
Subgroup lattice of C23.8S4 in TeX
Character table of C23.8S4 in TeX